Insulation monitoring relay CM-IWS.2 For unearthed AC systems up to $U_n = 400 \text{ V}$ AC

The CM-IWS.2 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems with a voltage up to 400 V AC. The CM-IWS.2 can be configured to the requirements of the applications and therefore used multi-functional.


The device is available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

Characteristics

- For monitoring the insulation resistance of unearthed IT systems up to U_n = 400 V AC
- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Rated control supply voltage 24-240 V AC/DC
- Measuring principle with superimposed DC voltage
- One measuring range 1-100 $k\Omega$
- Precise adjustment of the threshold value in 1 $k\Omega$ steps
- Fault storage / latching configurable by control input
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 1 c/o (SPDT) contact, closed-circuit principle
- 22.5 mm (0.89 in) width
- 3 LEDs for the indication of operational states

Approvals / Marks

Classifcations:

EN 50155, IEC 60571, NF F 16-101/102, EN 45545-2

EN 50155, IEC 60571

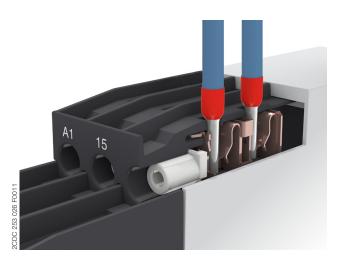
Temp.				Vibration and shock	Coated pcb.	
class	S1	S2	C1	C2	acc to IEC/EN 61373	İ
T3					Cat 1, Class B	no

NF F 16-101/1	102	EN 45545-2
Flammability index	Opticity and toxicity of smoke index	Risk level achieved
12	F2	HL3

Order data

Insulation monitoring relay

Туре	Nominal voltage U _n of the distribution system to be monitored	Rated control supply voltage	Connection technology	Order code
CM-IWS.2P	0-400 V AC	24-240 V AC/DC	Push-in terminals	1SVR 740 670 R0200
CM-IWS.2S			Screw type terminals	1SVR 730 670 R0200

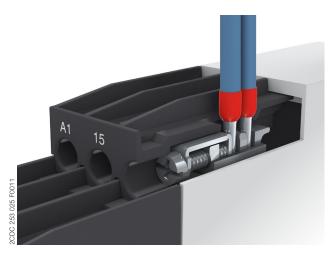

Accessories

Туре	Description	Order code
ADP.01	3	1SVR 430 029 R0100
MAR.01	Marker label for devices without DIP switches	1SVR 366 017 R0100
COV.11	Sealable transparent cover	1SVR 730 005 R0100

Connection technology

Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxS.yyP

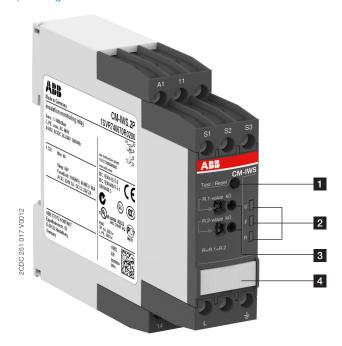


Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
 - Wire size: 2 x 0.5-1.5 mm², (2 x 20 16 AWG)
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals

Type designation CM-xxS.yyS


Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: 1 x 0.5-2.5 mm² (2 x 20 14 AWG), 2 x 0.5-1.5 mm² (2 x 20 16 AWG) rigid:
 - 1 x 0.5-4 mm² (1 x 20 12 AWG), 2 x 0.5-2.5 mm² (2 x 20 - 14 AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Test and reset button
- 2 Indication of operational states

U: green LED - control supply voltage

F: red LED - fault message

R: yellow LED - relay status

3 Configuration and setting

Front-face rotary switches for threshold value adjustment:

R.1 for R1 tens figures:

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 k Ω in ten k Ω steps R.2 for R1 units figures:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 k Ω in one k Ω steps

4 Marker label for devices without DIP switches

Application / monitoring function

The CM-IWS.2 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems

The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold values, the output relay de-energizes.

The device can monitor control circuits (single-phase) and main circuits (3-phase).

Supply systems with voltages $U_n = 0-400 \text{ V}$ AC (45-65 Hz) can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 400 V AC the insulation monitoring relay CM-IWN.x with or without the coupling unit CM-IVN can be used.

Measuring principle

A superimposed DC measuring signal is used for measurement. From the superimposed DC measuring voltage and its resultant current the value of the insulation resistance of the system to be monitored is calculated.

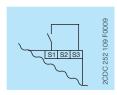
Operating mode

The system to be monitored is connected to terminal L. The earth potential is connected to terminal \(\pm \).

The device operates according to the closed-circuit principle (fault state: relay de-energized).

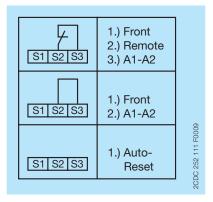
Once the control supply voltage has been applied the insulation monitoring relay runs through a system test routine. The system is diagnosed and the settings are tested. If no internal or external faults are found after this test routine is completed, the output relay energizes.

If the measured value drops below the set threshold value, the output relay de-energizes. If the measured value exceeds the threshold value plus hysteresis, the output relay re-energizes.

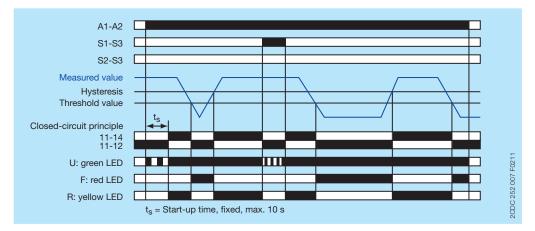

All operating states are signalled by the front-face LEDs. See table "LEDs, status information and fault messages" on page 8.

Test function

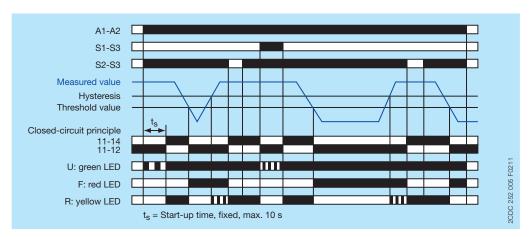
The test function is only possible when there is no fault.


By pressing the front-face combined test/reset button a system test routine is executed. The output relay remains deenergized as long as the test/reset button is pressed, the control contact S1-S3 is closed or the test functions are processed.

The test function can be activated either with the front-face combined test/reset button or with a remote test button connected as shown in the picture.

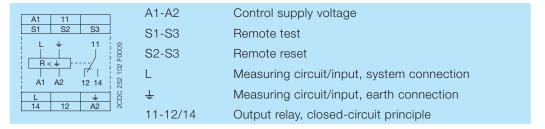

Fault storage, reset function and remote reset

The output relay remains de-energized and only energizes after the combined test/reset button is pressed or after the remote reset (terminals S2-S3) is activated, and when the insulation resistance is higher than the set threshold value plus hysteresis.



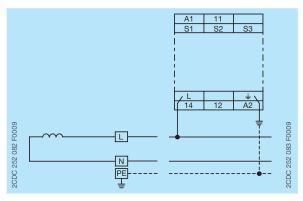
Function descriptions/diagrams

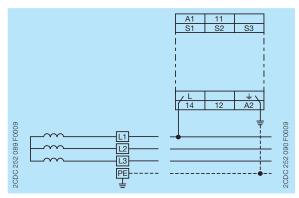
- Control supply voltage not applied / Output contact open / LED OFF
- Control supply voltage applied / Output contact closed / LED ON


Insulation resistance monitoring w/o fault storage, auto reset

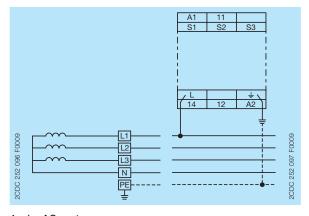
Insulation resistance monitoring with fault storage, manual reset

Connection and wiring


Connection diagram


Wiring diagrams

L can be connected to any of the conductors.


 $U_n \leq 400 \; V \; AC$

2-wire AC system

3-wire AC system

4-wire AC system

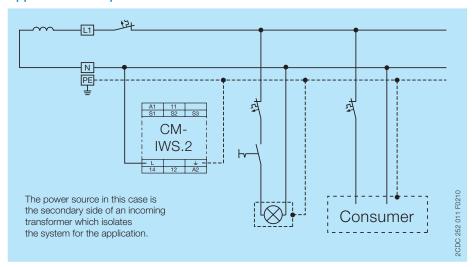
Configuration and settings

Rotary switches R.1 and R.2 (treshold value)

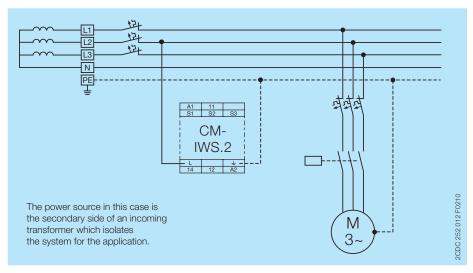
By means of two separate 10 position rotary switches $\stackrel{\bullet}{\text{w}}$ with direct reading scales, the threshold value for the insulation resistance R_F of the systems to be monitored can be adjusted.

With the R.1 rotary switch the tens figure is set and with the R.2 rotary switch the units figure is set. The set threshold value is then the addition of the two values. For example, R1.1 set to 70 and R1.2 set to 8 leads to a threshold value for R1 of 78 k Ω .

Operating state indication


LEDs, status information and fault messages

Operational state	LED U (green)	LED F (red)	LED R (yellow)
Start-up	ЛЛ	OFF	OFF
No fault		OFF	
Insulation fault (below threshold value)			OFF
System leakage capacitance during start-up too high ²⁾	ЛЛЛ	ллл	OFF
Invalid measuring result	Г	П_П_	OFF
Internal system fault	OFF	תתת	OFF
Test function	ЛЛЛ	OFF	OFF
No fault after fault storage1)	<u></u>	2)	ллл


¹⁾ The device has triggered after an insulation fault. The fault has been stored and the insulation resistance has returned to a higher value than the threshold value plus hysteresis.

²⁾ Depending on the fault.

Application examples

Earth fault / insulation resistance monitoring of an unearthed 2-wire IT AC system

Earth fault / insulation resistance monitoring of a 4-wire IT AC system

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuits

Input circuit - Supply circuit		A1 - A2
Rated control supply voltage U _s		24-240 V AC/DC
Rated control supply voltage tolerance		-15+10 %
Typical current / power consumption	24 V DC	00 11,117 011 111
	115 V AC	12 mA / 1.4 VA
	230 V AC	1
Rated frequency f _s		DC or 15-400 Hz
Frequency range AC		13.5-440 Hz
Power failure buffering time	min.	20 ms
Start-up time t _s , fixed	max.	10 s

Input circuit - Measuring circuit		L, <u>+</u>	
Monitoring function		insulation resistance monitoring of IT systems	
		(IEC/EN 61557-8)	
Measuring principle		superimposed DC voltage	
Nominal voltage U_n of the distribution system to be monitored		0-400 V AC	
Voltage range of the distribution system to be monitored		0-460 V AC (tolerance +15 %)	
Rated frequency f _N of the distribution system to be monitored		50-60 Hz	
Tolerance of the rated frequency f _N		45-65 Hz	
System leakage capacitance C _e	max.	10 μF	
Extraneous DC voltage U _{fg} (when connected to an AC system)		none	
Number of possible response / threshold values		1	
Adjustment range of the specified response value R _{an} (threshold)	minmax.	1-100 kΩ	
Adjustment resolution	•	1 kΩ	
Tolerance of the adjusted threshold value / Relative percentage uncertainty A	at 1-10 kΩ R _F (yellow marked scale)	\geq 15 %; max ± 0.5 k Ω	
at -5+45 °C, $U_n = 0$ -115 %, $U_s = 85$ -110 %, f_N , f_s , $C_e = 1\mu F$	at 10-100 kΩ R _F	±6 %	
Hysteresis related to the threshold value		25 %; min. 2 kΩ	
Internal impedance Z _i	at 50 Hz	135 kΩ	
Internal DC resistance R _i		185 kΩ	
Measuring voltage U _m		15 V	
Tolerance of measuring voltage U _m		+10 %	
Measuring current I _m	max.	0.1 mA	
Response time t _{an}	$0.5 \times R_{an}$ and $C_{e} = 1 \mu F$	max. 10 s	
Repeat accuracy (constant parameters)		< 0.1 % of full scale	
Accuracy of R _a (measured value) within the rated control supply voltage tolerance		< 0.05 % of full scale	
Accuracy of R _a (measured value) within the operation	at 1-10 kΩ R _F	5 Ω / K	
temperature range	at 10-100 kΩ R _F	0.05 % / K	
Transient overvoltage protection (♣ - terminal)	<u></u>	Z-diode	

Input circuit - Control circuits		S1 - S2 - S3
Control inputs - volt free		remote test
	S2-S3	remote reset
Maximum switching current in the control circuit		1 mA
Maximum cable length to the control inputs		50 m - 100 pF/m (164 ft - 30.5 pF/ft)
Minimum control pulse length		150 ms
No-load voltage at the control input		24 V DC ± 5%

User interface

Indication of operational states	
Control supply voltage U	green LED
Fault message F	red LED
Relay status R	yellow LED

Details see table "LEDs, status information and fault messages" on page 8 and "Function descriptions/diagrams" on page 6.

Operating elements and controls	
Adjustment of threshold value R _{an}	rotary switch, 10 k Ω steps for the tens figure

Output circuits

Kind of output		relay, 1 c/o (SPDT) contact	
Operating principle		closed-circuit principle1)	
Contact material		AgNi alloy, Cd free	
Rated operational voltage		250 V AC / 300 V DC	
Min. switching voltage / Min. switching cur	rent	24 V / 10 mA	
Max. switching voltage / Max. switching cu	ırrent	see "Load limits curves" on page 11	
Rated operational current I _e	AC-12 (resistive) at 230 V	4 A	
	AC-15 (inductive) at 230 V	3 A	
*****	DC-12 (resistive) at 24 V	4 A	
****	DC-13 (inductive) at 24 V	2 A	
AC rating l	Jtilization category (Control Circuit Rating Code)	B 300, pilot duty	
(UL 508)		general purpose (250 V, 4 A, cos phi 0.75)	
	max. rated operational voltage	250 V AC	
	max. continuous thermal current at B 300	4 A	
r	nax. making/breaking apparent power at B 300	3600/360 VA	
Mechanical lifetime		30 x 10 ⁶ switching cycles	
Electrical lifetime	AC-12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles	
Max. fuse rating to achieve short-circuit protection n/c contact		6 A fast-acting	
	n/o contact	10 A fast-acting	
Conventional thermal current I _{th}		4 A	

 $^{^{1)}}$ Closed-circuit principle: Output relay(s) de-energize(s) if measured value falls below the adjusted threshold value R_{an}

General data

MTBF		on request		
Duty time		100 %		
Dimensions (W x H x D)		22.5 x 85.6 x 103.7 mm (0.89 x 3.37 x 4.08 in)		
	packaging dimensions 97 x 109 x 30 mm (3.82 x 4.29 x 1.18 in)		2 x 4.29 x 1.18 in)	
Weight		Screw connection technology	Easy Connect Technology (Push-in)	
	net weight	0,141 kg (0,311 lb)	0,130 kg (0,287 lb)	
		0,166 kg (0,366 lb)	0,155 kg (0,342 lb)	
Mounting		DIN rail (IEC/EN 60715),		
		snap-on mounting without any tool		
Mounting position		any	any	
Minimum distance to other units		not necessary		
Material of housing		UL 94 V-0		
Degree of protection	housing	IP50		
	terminals	IP20		

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Connecting capacity	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 18-14 AWG)	(2 x 18-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 18-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(7.08 lb.in)	

Environmental data

Ambient temperature ranges	operation -25+60 °C (-13+140 °F)	
	storage	-40+85 °C (-40+185 °F)
		-40+85 °C (-40+185 °F)
Climatic class	IEC/EN 60721-3-3	3K5 (no condensation, no ice formation)
Damp heat, cyclic	IEC/EN 60068-2-30	6 x 24 h cycle, 55 °C, 95 % RH
Vibration, sinusoidal		25 Hz: 2.5 g

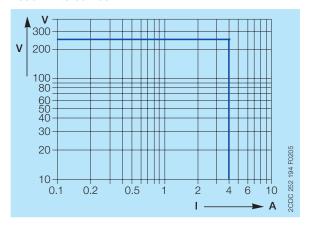
Isolation data

Rated impulse withstand voltage U _{imp}	supply circuit / measuring circuit	6 kV
	supply circuit / output circuit	6 kV
	measuring circuit / output circuit	6 kV
Rated insulation voltage U _i	supply circuit / measuring circuit	400 V
	supply circuit / output circuit	300 V
	measuring circuit / output circuit	400 V
Basic insulation	supply circuit / measuring circuit	400 V AC / 300 V DC
	supply circuit / output circuit	250 V AC / 300 V DC
	measuring circuit / output circuit	400 V AC / 300 V DC
Protective separation	supply circuit / output circuit	250 V AC / 250 V DC
(IEC/EN 61140, EN 50178)	supply circuit / measuring circuit	250 V AC / 250 V DC
	measuring circuit / output circuit	250 V AC / 250 V DC
Pollution degree		3
Overvoltage category	······································	III

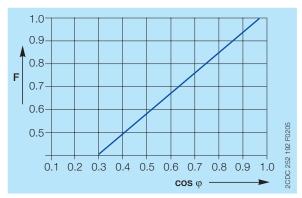
Standards / Directives

Standards	IEC/EN 60947-5-1, IEC/EN 61557-1, IEC/EN 61557-8
Low Voltage Directive	2014/35/EU
EMC Directive	2014/30/EU
RoHS Directive	2011/65/EU

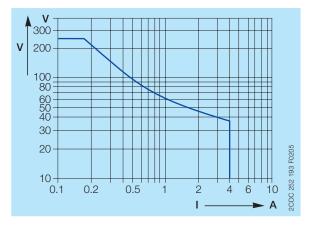
Railway application standards

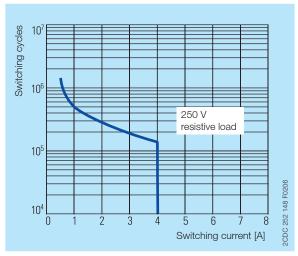

EN 50155, IEC 60571	temperature class	ТЗ
"Railway applications - Electronic equipment		
used on rolling stock"	supply voltage category	S1, S2, C1, C2
IEC/EN 61373		Category 1, Class B
"Railway applications - Rolling stock equipment - S	hock and vibration tests"	
EN 45545-2 Railway applications – Fire protection on railway vehicles – part 2:		HL3
Requirements for fire behavior of materials		
and components	ISO 4589-2	LOI 32.3 %
	NF X-70-100-1	C.I.T. (T12) 0.45
····	EN ISO 5659-2	Ds max (T10.03) 104
NF F 16-101: Rolling stock. Fire behaviour. Materials choosing		12 / F2
NF F 16-102: Railway rolling stock. Fire behaviour. Materials choosing, application for		
electric equipment		
DIN 5510-2 Preventive fire protection in railway vehicles. Part 2: Fire behaviour and fire		fullfilled
side effects of materials and parts		

Electromagnetic compatibility

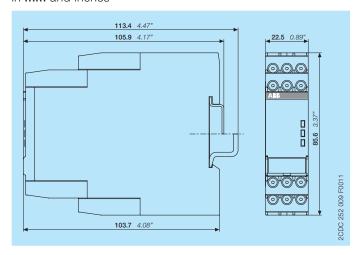

Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2, IEC/EN 61326-2-4
electrostatic discharge	IEC/EN 61000-4-2	Level 3, 6 kV / 8 kV
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	
electrical fast transient/burst	IEC/EN 61000-4-4	Level 3, 2 kV / 5 kHz
surge	IEC/EN 61000-4-5	Level 3, installation class 3, supply circuit and
		measuring circuit 1 kV L-L, 2 kV L-earth
conducted disturbances, induced by radio-frequency	IEC/EN 61000-4-6	Level 3, 10 V
fields		
voltage dips, short interruptions and voltage variations	IEC/EN 61000-4-11	Class 3
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3
Interference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

Technical diagrams

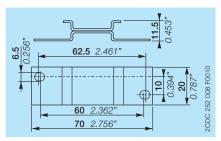

Load limits curves


AC load (resistive)

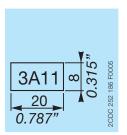
Derating factor F at inductive AC load


DC load (resistive)

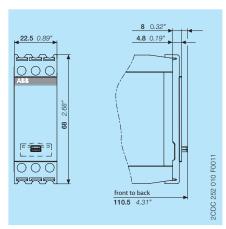
Contact lifetime


Dimensions

in mm and inches



CM-IWS.2 - Insulation monitoring relay


Accessories

ADP.01 - Adapter for screw mounting

MAR.01 - Marker label for devices without DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Catalog	2CDC 110 004 C02xx
CM-IWS.1, CM-IWS.2	Instruction sheet	1SVC 730 550 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Automation, control and protection

-> Electronic relays and controls -> Measuring and monitoring relays

CAD system files

You can find the CAD files for CAD systems at http://abb-control-products.partcommunity.com

-> Low Voltage Products & Systems -> Control Products -> Electronic Relays and Controls

Document number 2CDC 112 196 D0201 (06.2016)

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2016 ABB All rights reserved